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Key concepts

Bayesian inference in finite, parametric models
e we contrast maximum likelihood with Bayesian inference
¢ when both prior and likelihood are Gaussian, all calculations are tractable

¢ the posterior on the parameters is Gaussian
¢ the predictive distribution is Gaussian
® the marginal likelihood is tractable

® we observe the contrast

¢ in maximum likelihood the data fit gets better with larger models
(overfitting)

® the marginal likelihood prefers an intermediate model size (Occam’s
Razor)
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Maximum likelihood, parametric model

Supervised parametric learning:
e data: x,y
e model M: y =y, (x) + ¢
Gaussian likelihood:

N
P(U|X>Wajw) 0.8 H exp(_%(yn - fw(xn))z/o—rzloise)'

n=1
Maximize the likelihood:

wyn = argmax p(ylx, w, M).
w

Make predictions, by plugging in the ML estimate:

PYulxs, wyr, M)
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Bayesian inference, parametric model

Posterior parameter distribution by Bayes rule (p(a|b) =p(a)p(bla)):

p(wlx,y, M) = p(WwM)p(ylx,w, M)

Making predictions (marginalizing out the parameters):
PY«lxs, %, 4y, M) = Jp(y*,WIx,y,x*,M)dw
= Jp(y*\w,x*,M)p(W|x,y,M)dW-
Marginal likelihood:

- Jp(wmm(wx,w,mdw.
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Posterior and predictive distribution in detail

For a linear-in-the-parameters model with Gaussian priors and Gaussian noise:

® Gaussian prior on the weights: p(w|/M) = N(w; 0, 02, 1)

® Gaussian likelihood of the weights: p(ylx, w, M) = N(y; ®w, o2, 1)
Posterior parameter distribution by Bayes rule p(a/b) = p(a)p(bla)/p(b):
w|M X, w, M
plwix,y, 0 = POVRUPRO WM gy )
1 o2 1
= (0,2, @ ®+0,21) " and p = (CI)Td)Jr Srre ) @ Ty

The predictive distribution is given by:

Py %y, M) = jp(ym,x*,mp(w\x,y,maw

= N(ya; d(x) 1, ) "Zd (%) + 02500)-
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Multiple explanations of the data

-1 0 1 2
i
Remember that a finite linear model f(x,) = ¢ (x,) "W with prior on the weights
p(w) = N(w; 0,02,1) has a posterior distribution

_ ( —2 (I)T(D+0'_2)

I]Olbe

(Wwix,y,M) = N(w; u, ) with 1
P y Y, L, uo= <(DT(D+ Zigise I) (DTy

and predictive distribution

PYIxa %, Y, M) = N(yus; dx) 1y d(x) TZD (%) + 05000 )
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Marginal likelihood (Evidence) of our polynomials

Marginal likelihood, or evidence” of a finite linear model:

Jp(w\M)n(ymw,Mde
= N(y; 0,02, @D +02, I

noise

Luckily for Gaussian noise there is a closed-form analytical solution!

or ® The evidence prefers M = 3,
not simpler, not more complex.

50l ¢ Too simple models consistently
miss most data.

| og evidence

® Too complex models frequently
miss some data.

100 5 10 15 . 20
M Degree of the pol ynomn al
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